The Blue Foam Revolution


Hard Science vs. Professional Skills – Rebalancing Engineering Education

Posted by Richard K. Miller on Nov 11, 2015 11:14:11 AM

RKM-New_PhotoI learned the hard way about why engineers need to develop their professional skills – and in my case it had to do with self-confidence. You see, growing up in California, I was interested in protecting large buildings from earthquake damage. So, I did a master’s thesis at MIT that explored a really unusual idea for protecting buildings: unbolting them from the ground and mounting them on Teflon pads at the foundation, so they could intentionally slip around during an earthquake. At the time, this was unorthodox and implicitly challenged conventional thinking. My teachers at MIT told me I should pursue this, so I packed up and went 3,000 miles across the country to Caltech for my PhD—to the school where the Richter scale was invented—and I met with one of the top professors of earthquake engineering.  In not so polite terms, he rejected my idea. I was devastated and switched majors.

But later I discovered that a professor at Berkeley came up with a similar idea and built one of these slippery or “flexible” foundations for a model building and tested it on their large shake table.  Guess what? It worked very much as my thesis had predicted.  And today there is a thriving industry in what’s called “Base Isolation Systems” for buildings.

While my top notch engineering programs gave me the technical expertise I needed to develop new and innovative solutions, they failed to give me the professional skills I needed, which in this case were the power of my convictions and a “can do” attitude, sometimes referred to as qualities of an entrepreneurial mindset.

I love the insights from Kirsten Wolfe's thesis on the careers of MIT graduates – arguably some of the most talented engineers in the world. These graduates reported that while they use a fraction of the technical skills they learned in college in the real world, they use professional skills much more frequently but for the most part didn’t learn them in college.

These skills include ethical behavior and trustworthiness, a positive outlook and accepting responsibility, effective communication and multidisciplinary thinking, to name a few.

In our increasingly complex world where solutions involve human nature as much as they involve technology, engineers will be needed to provide comprehensive and complete situational diagnoses, involving interdisciplinary understanding of the root causes and the consequences of any new technology introduced into the world. They will require global systems planning and analysis, involving social, economic, political, and even religious factors to obtain desired changes in human behavior on both local and global scales. 

To surmount these challenges, they will have to function and lead multidisciplinary and diverse teams, be persuasive communicators and active listeners, and be resourceful and know how to acquire new knowledge.

Can these skills be taught? I believe so and there’s a growing body of alternative learning experiences bearing it out at places like FIRST Robotics where high schools students compete as teams and become intrinsically motivated to study STEM subjects. Or at Northeastern University, where students engage in Co-ops that alternate classroom studies with full-time work in career related jobs for six months.

At Olin, we’ve discovered that experiential learning focused on solving people’s real problems is the best way to develop these professional skills.  We begin this process from the minute students walk into the college and it culminates with a senior capstone experience where seniors work in teams sponsored by companies with real problems they need to solve. Our graduates are highly sought after by graduate schools and employers alike not only because they have authentic understanding of math and physics but because they are far ahead of their peers in their professional skill development.

It’s time for engineering educators to rebalance their curriculum to account for the reality of the new world.

download the professional skills primer





Topics: innovation economy, engineering education

What is the Blue Foam Revolution?

Insights from Olin's Educational Laboratory

Ideas, methodologies and experiments designed to further the revolution in engineering education. Posts will feature ideas and topics that are forward-thinking and top of mind for Olin College of Engineering President, Richard Miller, our alumni and several of our faculty members.

Subscribe to Updates from the Blue Foam Revolution